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Abstract—The problem of a broken fiber, embedded in an infinite medium with distinct elastic
properties, is studied theoretically. The composite is subjected to tensile loading parallel to the fiber.
To simulate the influence of a weak fiber-matrix interface. interfacial slippage governed by a
Coulomb friction law is permitted. The solution method that is employed reduces the problem to
four coupled singular integral equations which are solved numerically. Results for the average axial
fiber stress, for the enhancement in the tensile stress in the matrix and for the opening of the crack
are presented ; where relevant, comparisons are made with simplified. highly approximate methods
of analysis.

I. INTRODUCTION

Failure in fiber-reinforced composites is generally preceded by the development of damage.
Among the most common forms of damage are fiber breaks and matrix cracks. In ceramic-
matrix composites, matrix cracks appear at lower stresses duc to the lower ductility of the
matrix, while fibers begin to fail at stresses approaching the ultimate strength. The study
of the stress redistribution associated with the development of damage is of interest for
several reasons: tor example, damage alters the subsequent stress-strain behavior, and
damage cventually coalesces in some way to cause fatlure. This paper is concerned, in
particular, with the redistribution of the stresses associated with the breaking of a fiber.

The first scrious attempt at a solution to the problem of a broken fiber appears to be
that of Muki and Sternberg (1971), who treated the fiber as a one-dimensional continuum,
from which it was possible to develop an integral equation for the force carried by the fiber.
A rigorous, tully three-dimensional solution to this problem was developed by Ford (1973),
who considered both the load transfer back to the broken fiber, which was of interest to
Muki and Sternberg, as well as the stress intensity factors.

In so far as its relevance to many real composites, however, the problem studied by
Muki and Sternberg (1971) and Ford (1973) is deficient in one important respect: it
presumes perfect bonding at the fiber—matrix interface. By contrast, the interfuces of many
composites are far from perfect; indeed, the strength—or weakness—of the interface is
consistently cited as having a major influence on composite properties. Since the effects of
damage, particularly fiber breaks, are highly sensitive to interface conditions, methods of
analyzing damage in the presence of an imperfect interface are potentially of great value.
Herein, we present a rather general, highly accurate method for analyzing the stress redis-
tribution associated with a broken fiber; besides its applicability to the case of perfect
bonding at the interface, this method, as will be seen, can handle a wide variety of interface
laws,

We illustrate this method of analysis and its predictions by employing a simple interface
model which may be relevant to ceramic-matrix composites. In some brittle-matrix com-
posites there appears to be no chemical bonding at the interface; instead, the fiber and
matrix arc coupled by friction or mechanical interlocking (Phillips, 1974; Prewo and
Brennan, 1980). These experimental observations have suggested the plausibility of a fric-
tional model for the interface. Using a Coulomb friction law for the interface, Dollar and
Steif (1989) considered the two-dimensional broken fiber problem, under the assumption
that the clastic moduli of the fiber and matrix are identical. They found the stresses near
the fiber break to be nonsingular, with the stress concentration dependent on the interface
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parameters and on the applied load. Furthermore. the rate at which load is transferred
back to the fiber is significantly stower than the transfer rate assuming perfect bonding.
more consistent with simplified shear-lag style analyses. Wang er ¢/, (1989) showed that the
method of Dollar and Stetf (1989) involving distributed dislocations may be generalized to
cases where the fiber and matrix have different moduli, provided the slip length is vanishingly
small compared with the break.

With the eventual goal of treating the full three-dimensional bimaterial broken fiber
problem with a frictional interface. the present authors recently developed an interface
integral equation method. As a test of this method. we applied it to the two-dimensional
bimaterial broken fiber problem (Schwietert and Steif, 1991): by comparison with known
solutions. this method was shown to provide rather accurate numerical solutions, In the
present paper, we demonstrate that this method is readily modified to handle axisymmetric
three-dimensional problems. in particular the broken fiber problem that is of concern here.
As has been appreciated by others. the rate of toad transfer to the broken fiber is of central
importance to the residual strength and the subsequent stiffness of the damaged composite.
Hence, a principal focus here will be on the nature of the load transfer and its dependence
on interface and material parameters. In addition, we will present results for the stress
enhancement neuar the break. as well as for the crack-tip opening displacement.

2. PROBLEM DESCRIPTION

The problem we are considering is shown schematically in Fig. 1 and is best described
with a polar coordinate system (r.0.2). An infinitely long fiber of circular cross-section,
occupying 0 < r < «, 0 < 0 < 2r, is embedded inside an infinite medium, the matrix. The
fiber and the matrix are homogencous, isotropic and linear elastic, with shear modutus and
Poisson ratio G . v, and G, v, respectively. A residual state of stress is assumed to exist,
in which the normal stress at the interface is compressive (4, = —g, < 0) and there s no

fiber break

— -

Coulomb
friction
interface

Fig. 1. Schematic of a cracked fiber in mnfinite medium. which is opened with a pressure g,
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residual shear stress at the interface : the fiber-matrix interface is capable of slip according
to a Coulomb friction law. The fiber is broken at = = 0 over its entire cross-section. result-
ing in a penny-shaped crack of radius a. The crack faces are subjected to an opening
pressure p.

A point-wise Coulomb friction law is employed here to model the interfaces. According
to this friction law, at any instant in the loading history either sticking. slipping or opening
occurs at a generic point along the interface. Conditions for these three states along the
interface r = g are as follows:

d d/
stick condition o < 0.1t| < lol. 2 = 0. h= =0 (1a)
dt de
d dh
slip condition ¢ < 0.]t| = o}, sgn (a—f) =sgn(r). h= Pl 0 (1b)
opencondition o=1t=0.h>0 (o)
with
0=0, T=0, (2a.b)
g = lhm [u(a+e z)—ula—s 2)] (2c)
r-e(*
= lim [y (a+e2)—ula—t2). (2d)
FEYin

In these equations i, and u, denote the r- and z-components of displicement, respec-
tively, g is the friction coeflicient which is assumed to be constant along the interface,
and d{ )/dr denotes the derivative with respect to a time-like parameter that increases
monotonically as the loading procceds. The condition sgn (dg/dt) = sgn () is the condition
of positive energy dissipation which dictates that the instantancous increment of slip be in
the same direction as the shear stress. Note that we ignore the distinction between static
and kinetic friction.

We wish to point out the connection between the problem just posed and the problem
of a broken fiber under a remote load. In general, the composite will have residual stresses
which arise during its fabrication and processing. This distribution of residual stresses will
be quite complicated (practically defying analysis), but is likely to be described rather
crudely as follows. There is a residual longitudinal normal stress oy in the fiber and oy in the
matrix (one tensile, one compressive), and there is a residual radial tension or compression o,
at the interfuce. These stresses are often estimated with a concentric eylinder analysis which
uses the Lamé solution [see, for example, Timoshenko and Goodier (1970)]. Let there also
be a remotely applied longitudinal tension. By itself, this remote tension causes the stress
in the fibers to be o, and, in general, gives rise to a radial stress o, at the interface. (o,
is uniform to the same degree of approximation as the residual stress o, is uniform.)

Consider now the problem of a single broken fiber in an infinite medium which has
the stresses just described ; the broken fiber must have zero tractions across the crack faces.
Of particular interest is the feasibility of decomposing this problem into one involving
pressurc applied to the crack faces. If one were analyzing a composite with a perfectly
honded interface, then one would only need to solve the problem of opening the crack faces
with a pressure which is equal to 0.+, (while the remote stresses are zero); the piecewise
constant stresscs associated with the remote stress and all the residual stresses can then be
simply added back in the end. In the case of a Coulomb friction interface, however, it is
necessary to account for the total tractions at the interfuce. This can be done by again
considering the opening of the crack faces with a pressure o, + ;. The shear stress o,. at
the interface associated with this pressurization loading is the only shear stress in the
problem. The total normal stress at the interface, however, includes contributions from the
residual stresses, from the remote load. as well as from the pressurization loading. Thus,
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to solve the problem with the pressurization loading. one must include an effective residual
normal stress 6, = — g, = 6,+0,,4. Where it is assumed that 6,4+ 0,4 < 0. Note that 7,
actually changes with the load through the term o,,,. although here we do not account
exphieitly for anv varnation of g, with o, . The tongitudinal stresses can again be added back
at the end without changing the essential features of the solution associated with the crack
or the interfuce.

In analyzing this problem. it is of interest to examine the nature of the stress field near
the perimeter of the penny-shaped cruck. Experience with other problems involving cracks
impinging on frictional interfaces (Dollar and Steif. 1989 Schwietert and Steif, 1991)
suggests that the stresses in the vicinity of the fiber break are, in fact, nonsingular. To see
that this carries over to the three-dimensional axisymmetric problem. we appeal to Zak
(1964). who showed that the stress singulurities at evlindrical corners in axisymmetric
problems correspond to those of planc strain problems with equivalent boundary
conditions. This equivalence can be appreciated by noting that the hoop strain must be
bounded as it is given by e, = 1 r: thus, it s negligible in comparison with the radial and
axial strains which are singular. Therefore. to demonstrate the ehsence of singular stresses
i the three-dimensional problem. 1t is sufficient to show the absence of singular stresses in
the analogous two-dimensional plance strain problem. Oncee this is demonstrated. however.
one can expect the forms of the finite near-tip stress fickds to be different in the two cases:
the axisymumetric strain state is not effectively plane straan now, since the hoop stramn is no
fonger neghgible in comparison with the other strains,

Itis, therefore, suthicient to consider the configuration of Fig, 2 and scarch for separable
stress ficlds of the forme e ~ p 70 where pis the distancee from the crack tip and admissible
values of 4 arc in the range O < Re (4) < 1. In Schwictert and Steif (1991) the possibility
of singular stress fields for this contiguration was analyzed. tfor ditferent values of the
Dundurs (1967) bimateriad parameters

(.\;1“\‘1 }’l) "“(1'1(3'\'3 + l) (;:(i\', -~ i)"‘(;((l\'-_\ ind i)
*= Goaw + D) +G (0 + 1) TGN+ DG+ 1)

where ny = 3 ~dv, and x, = 3 ~4v i plane strain.

It was found that for most relevant values of =, ff and g, there are no admissible stress
singularities. For example il g = 0.3, singularitics are only possible for extreme moduli
ratios (GG x50y, This remains essentially true for large values of goas well. As mentioned
in the Introduction, our concern is mainly with fiber-reinforeed ceramics ; the moduli of the
constituents of these materials are typically not so different. Henee, it can be concluded
that no stress singularities will be present tor relecant combinations of moduli. For other
composite systems, such as graphite tibers in an epoxy matrix, mild singularitics are possible.
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Fig. 2. Conliguration and houndary conditions tor the near-tp stress analysis,
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Fig. 3. Schematic of body 1. a homogeneous half-space of fiber material, G . v,

3. METHOD OF SOLUTION

In this scction we will present the integral equation method which is used to solve the
problem considered here, This method was developed carlier (Schwictert and Steif, 1991) for
solving two-dimensional problems and is extended here to three-dimensional axisymmetric
problems. We will take advantage of the symmetry about the plane = = 0 and solve the
problem for the upper half of the composite (z > 0). The method requires the introduction
of two auxiliary bodics.+ Consider body | which is @ homogencous half-space having the
same moduli as the tiber. In the portion 0 < r < a, 0 <0 < 2nand 0 <2 < 2 of body 1.
we will set up the same stress and displacement ficlds as exist in the corresponding portion
of the composite body. Todo this, we apply a uniform pressurepover < r < .0 < 8 < 2r,
2= 0 and zero tructions over the rest of the surface = = 0. In addition, we apply a dis-
tribution of ring forces df = dfje, +df.e. (see Fig. 3)

df,e, +dfe. = p (e, dz+pa(2)e.ds onr=a,0<0€2r,0<x< > 3

Note that these body forees, which preserve axisymmetry about the z-axis, must be
applied so as to induce no additional tractions on the plane = = 0. Of particular interest
will be the tractions and displacement gradients at r — ¢~ where a ™ is defined as

a = Iin}’ (a—¢).

=8

We denote these tractions and displacement gradients by of,.. of., o, and «f.. By suitably
adjusting the distributions p {2) and p,{2). one can produce any distribution of tractions at
the surfuce r = ¢ . (Note that the stresses and displacement gradients can be discontinuous
across the surface of body forces ; however, we are only interested in field quantities inside
0 < r < a.) The goal is to produce the correct o, o, uf. and «f.; namely. those values of
stress and displacement gradients along r = ¢~ that equal the corresponding values in the
composite body. Then, since the stress and displacement fields inside 0 < r < a depend
uniquely on af,. of.. uf. and uf. (and on p), the same stress and displacement fields will exist
inside 0 < r < « of body | as in the corresponding portion of the composite body.

+ Our method is in some ways similur 1o that employed by Ford (1973). who also introduces auxiliary bodies.
His method. in which a penny crack solution is built in, has the advantage that the homogeneous, perfectly bonded
solution emerges exactly. while it does not in our method. On the other hand, our method is more convenient to
apply to problems in which the stress is nowhere singular.
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Consider now body 2 which is a homogeneous, infinite body having the same moduli
as the matrix. In the portion r > g of body 2 we will set up the same stress and displacement
fields as exist in the corresponding portion of the composite body. To do this. we apply a
distribution of ring forces df = df,e. +df.e. (see Fig. 4)

dfie. +dfie. = pi(2)e, dz+py(zie.d: onr=a0<0< 2, —x << = €Y

where pi{z) = po(—2)and —p(2) = p(—2).

Note that these body forces preserve symmetry about the plane - = 0. as well as
axisymmetry. Now the tractions and displucement gradients at r — ¢ will be of particular
interest. Here, ¢ is defined as

at = Iirr{l)(a+s:}. (5
:::(l

We denote these tractions and displacement gradients by o). o, ! and . By suitably

adjusting the distributions p(2) and p,(2). one can produce any distribution of tractions
and displacements at the surface v = « . (Discontinuitics again exist across the surface of
body forces : however. now we are only interested in field quantities in the region r > 4.)
The goal is to produce the correct o), o™, w)t and «}': namely. those values of stress and
displacement gradicnts along r = ¢” that cqual the corresponding values in the composite
body. Then, since the stress and displacement fields in the region r > ¢ depend uniquely on
oM, aM M and oM, the same stress and displacement ficlds will exist inside these regions

as in the corresponding portion of the composite body.

Fig. 4. Schematic of body 2. a homogeneous infinite body of matrix material. G, vy
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The nature of the interface in the composite material will determine the appropriate

relationship between of,, o%. wl., uf. and o)y, oM, &%, u.. In the case that the conditions
for a Coulomb friction interface prevail, this relationship is given by :

of =¥ .ob =a . =ult uf. =l stick zone. (6a)
of =M. 6. =M. uf. =uM.0,. = —po, slipzone. (6b)
of =M =006 =6=0 open zone. (6¢c)

The functions p,(2). p:(2). pa(=) and p,(2) have to be adjusted in such a way that eqns (6)
hold along appropriate portions of 0 < = < oc. Then, the region 0 < r < a of body ! can
be matched up with region r > a of body 2, yielding the solution to the problem.

Expressions for of,, 6F., uf. and «f, in terms of p, p,(z) and p,(z) and &, o¥, u} and
«™_in terms of p.(2) and p,(=) are given by the following:

£

o, =pAu(2)+1p () + f pi()A4 (2.2 d="+ L p2(")Aa(z. ") d (7a)
()] [}

af. = pBo(z)+ bpa()+ J‘)‘ p1(Z)B (=2 ) d=' + L pa(=)By(z. ) d= (7h)

uy. = pCo(2) + jﬂl pi(E)C (2.2 d" + 4[:/’:(:')&(:. :)ds (7c)
W, = pDu(z)+ f PuEID (2 2) d f ’( p2()D (= ) d (7d)
oy = —ipy(3)+ [ 'L pi()A5(22) d=" + '[ )b pa(Z)As(z,2) A (8a)
o = —lpu()+ f Cp(IBy(= ) fm(:')&(:. 2)ds’ (8b)
WM = j P CH () A2+ LL po(=)Clz, 2y A’ (8c)
ut, = LL Pi(z)D (=) d + L pa(2)Dy(z,2") d=’ (8d)

where the kernels A,(z, 7). B(z.27). Ci(z.2") and D,(z,z’) are derived from the solutions
for a ring load in a half-space (i = 1,2) and from the solutions for a ring load in an infinite
space (i = 3,4). These ring load solutions can be found by applying the Hankel transform
to the governing equation and boundary conditions (Sneddon, 1951), and are given in the
Appendix. With the results of Eason et al. (1955), the resulting integrals can then be
expressed as functions of elliptic integrals and can be readily evaluated. A,4(z). B4(z), Cy(z)
and Dy(z) are derived from the solution to a half-space on which a uniform pressure is
applied over the arca of a circle with radius « (Sneddon, 1951). A subsct of these kernel
solutions has been presented by Selvadurai and Rajapakse (1985).

From intcrface conditions (6) and eqns (7) and (8), a set of four coupled integral
equations for the four functions can be derived. Alternatively, if the cracked fiber were
perfectly bonded to the matrix, then the condition would be continuity of traction and
displacement (6a), and again four coupled integral equations can be derived. Use will be
made use of this when the method is tested on problems with a perfectly bonded interface.

Thesc integral equations were solved numerically by a standard discretization
procedure. For convenience, a change of variables
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is employed to transtorm the domain of the interface 0 < - < £ t0 0 < ¢ < 1. The domain
0 < { < lis then divided into .V equally sized intervals. and the interfacial stresses and
displacement gradients o),. ol «f. 1l and Y o¥ . 1M, ul! are evaluated in the mid-points
of these intervals. For this evaluation the functions pi(2). poAZ) pal2) and puic) are
approximated as piece-wise linear functions with two exceptions. To capture the behavior
of the stress field as - = » properly. the functions in the last interval (zy |, <z < %) are
approximated by a constant divided by =*. For cases in which the interface is perfectly
bonded. the stress field is singular in that 6 ~ p 7 as the crack tip is approached ; the order
of the singularity. 4. is real and depends on the relative moduli (Hein and Erdogan. 1971).
Therefore in the first. say, M intervals, the functions are approximated by a lincar function
divided by =* to account for the singular behavior close to the crack tip. The validity of this
representation is justified in Schwietert and Steif (1991). All results presented are based on
& = 40 for singular problems. M = 4.

Clearly. the accuracy of this method is dependent on the discretization and on the
interpolation functions that :re chosen. Here, the major goal is to solve the broken fiber
problem with a frictional interface © in previous studies of similar problems (Dotlar and
Stetf, 1988, 1989 Stetland Dollar, 1988) picce-wise linear interpolation functions had been
found to give more accurate results than, for example, the often-used Chebyshey
polynonuals (Erdogan or wf0 1973). For the purpose of testing its accuracy, this method
will also be applicd to some problems in which the interface is perfectly bonded ; for those
cases the choice of prece-wise hnear interpolation functions is possibly not optimal.

1 RESULIS AND DISCUSSION

In Schwictert and Steif (1991) we applied this integral equation method to several two-
dimenstonal test problems. Here we apply the method to two test problems, now three-
dimensional problems, having the same geometry and loading as the main problem studicd
in this paper (Fig. 1), but having different interface conditions and clastic propertics. For
the first test problem, the interface is pertectly bonded and the elastic properties of the fiber
and the matrix are identical. This s equivalent to the problem of a penny-shaped crack in
a homogencous material, which was solved by Sneddon (1951). For the second test problem
the intertuce is perfectly bonded, but now the clastic properties of the matrix and the fiber
are not identical. This problem was solved by Ford (1973).

In the first test problem the integral equations are set up according to egns (6a). Now
the stress field 1s singular, with the order of the singularity. 4, equal to 1/2. Three specific
results of our caleulutions were compared with Sneddon’s penny-cruck solution : the stresses
a,, and a,. along the interface, and the stress o.. on the plane = = 0. The error in the stresses
g, and g,. was found to be less than 0.5% over the entire range, except in the interval closest
to the cruck, where the error is approximately 3%. The error in ¢, at the plane = = 0 was
found to decrease with increasing 17 it appears to be less than 1% for points further than
0.03¢ from the perimeter of the cruck {r > 1.05¢) and less than 0.5% for
points further than 0.1e from the perimeter of the crack. Close to the crack the error
increases significantly and is, for example, about 10% for a point at a distance of 0.001u
from the perimeter.

In the second test problem, the integral equations were again set up according to (6a).
The stress field is again singular and the order of the singularity, A, which can be calculated
from the results of the study by Hein and Erdogan (1971), is rcal and in the interval
# < 4 < 1. For this problem the axiul fiber stress, averaged over the fiber cross-section, I,
was calculated for different combinations of material parameters G, vy G5 vy and compared
with the results of Ford (1973). This average axial fiber stress at ==z, is found by
integrating the interfacial shear stress g, from 2 = 0 to =y
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Y
Tz = ——;J 6,.d-—p. (10)

1

Comparing X is. therefore. tantamount to comparing g,. at the interface. Note that the
average axial fiber stress is equal to —p at = = 0 and approaches 0 as = — . The results
were found to correspond very well with the results of Ford (within 2%), provided a
correction was introduced to compensate for the error in g,. in the first interval. In this
comparison, the ratio of elasticity moduli G,/G, was varied from 1 to 10. The largest
correction for o, in the first interval was about 10% for the case G, /G, = 10.

From the results of these test problems. and of the test problems presented in Schwietert
and Steif (1991). one can conclude that the method proposed here can give accurate results
for the main problem studied in this paper. We will focus this study on five cases, with
ditfferent ratios of Young's moduli E,/E.. The first case corresponds to a homogeneous
material. £,/E. = 1. For the second case, we have chosen the parameters of a Nicalon-
reinforced lithium-alumino-silicate glass ceramic (Prewo, 1986), which has a modulus
ratio E,/E, = 2.38. For the third case, we have chosen the parameters of Silicon carbide
monofilament-reinforced borosilicate glass ceramic, which has a modulus ratio E\/E, =
6.75 (Prewo, 1982: Prewo er al., 1986). In the fourth and fifth case the modulus ratios
were chosen to be the reciprocals of cases 2 and 3. with the matrix (the uncracked con-
stituent) betng stiffer than the fiber (the cracked constituent): hence E,/E; = 0.42 and
EJEs = 0.15, respectively. {The problem then represents a circular matrix crack which
impinges on surrounding fibers.) For convenience. we have fixed vy = v, = 0.3 for all these
cases (which makes £/, = ,/G,). and we have chosen the Coulomb friction cocthicient
p#tobe 0.3

We anticipate the solution to involve slip over some portion of the interface. In
particular, we expect the fiber to slip with respect to the matrix over the region 0 < |z < L,.
In this work, we will limit ourselves to cases which have slip, but no opening over the
interface. A suflicient condition to ensure no opening is that the stress normad to the
interface, a,,, is compressive over the entire interfuce ; for the cases studied this has to be
veritied o posteriori. For this problem the integral equations ure set up according to the
relations (6u) and (6b). Since the problem now does not contain a singularity, the functions
in the intervals close to the crack tip are also approximated as picce-wise lincar,

A difficulty that arises in solving the equations is that the slip length L, is dependent
on p, jrand g, For numerical convenience we fixed g and L ja, and then solved the equations
assuming different values of p/a,. The correet value of p/a, corresponds to interfucial
stresses and displacement gradients at the end of the slip zone satisfying both (6a) and (6b)
(4 smooth transition from slip to stick). Thus solved, the solutions for a,, und a,. ulong the
interface approach zero at the crack tip, as one would expect from the two-dimensional,
asymptotic stress ficld (Dollar and Steif, 1989 Schwictert and Steif, 1989). This suggests
that, unlike the solution for the perfectly bonded problems, the error in the solution at the
crack tip is small. These caleulations were repeated for the five cases mentioned above; as
expected. the slip length increases with increasing p/o,. We also carried calculations for the
sctof parameters £/E, = 5, vy = vy = 0.25 and g = 0.5. This case was considered by Aksel
et al. (1991), who calculated the slip length for this using a finite element method. The
results agree to within 10%.

In studying a broken weakly-bonded fiber, our focus is mainly on three particular
results : the load transfer from the fiber to the matrix ; the opening of the crack tip which
is a consequence of the interfacial slippage ; and the stress concentration near the broken
fiber. One question of interest is whether the load transfer and the crack-tip opening can
be estimated by approximate analyses which are ubiquitous in the composites literature [see,
for example, Kelly and Davies (1965) and Marshall and Evans (1985)]. These approximate
analyses assume that the shear stress at the interface is constant, say t,. [Note that extensions
of the shear-lag method to account for variations in normal stress which can alter the
friction stress have been proposed (e.g. Takaku and Arridge, 1973: Morton and Groves.
1976 Steif, 1984 Shetty, 1988). However. we compare our results only with constant
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interfacial shear stress analyses since these seem to be standard in micro-mechanics models
of ceramic-matrix composites.] Then. by equilibrium arguments. the average stress in a
broken fiber. I .. must be linear with distance from the break according to

N

Eupp(:l)‘:;f(l:]‘“/’ 0 <z <L) (1n

where the transfer length L u is given by p;2t,. Note that this approximate analysis gives
a constant load transfer rate. and that all of the load is transferred over the length L.

Through the use of a concentric cylinder analysis, one can similarly estimate the
shppage which causes crack-tip opening. With the linear load transfer. one can find the
strains in the fiber and the matrix and then integrate over the slip length (transfer length)
to obtain the jump in displacement which is the crack-tip opening. This procedure, which
is better known in the case of estimating the matrix-crack opening (Marshall and Evans,
1983). leads to the following result:

pa

= . 2
4, F, (12)

w

The infinite-domain problem demands a great deal of any approximate analysis and more
sophisticated approximate methods might conceivably be employed to estimate the opening.
The point here, however, is merely to indicate the degree to which the simplest-minded
approach can give reasonable answers.

Two aspects of the load transfer are of interest: the rate at which the load transters
over the slip zone and the fraction of the total load that s transferred over the ship zone,
Figure § shows the average axial fiber stress versus z/a for case 2 and case S, for a slip
length of £, = 2.333¢. The applicd pressure pis about 2.33a, in both cases. Figure 5 also
shows the average axial fiber stress caleulated with (), assuming 1, is equal to po, (dashed
curve). This result indicates that over the slip zone the rate of load transfer 1s almost
constant ; however, the rate is higher than if a constant shear stress pa, is assumed and
much higher it the fiber s more compliant than the matrix, This may be understood by
considering the discussion of the results of other frictional interface problems (Dollar and
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Steif, 1988, 1989). There it was found that the shear stress at the interface, given by the
Coulomb friction law. is itself composed of two parts: uo, (associated with the residual
stress) and the remainder, which is associated with the loading. Except for the immediate
vicinity of the crack tip. the effect of pressuring open the crack is for the fiber to expand,
adding to the compression at the interface. Thus. the stiffer the fiber. the less will be the
expansion and. therefore, the less will be the additional interfacial shear stress. Clearly, a
constant shear stress approximation can reasonably describe the load transfer from fiber
to matrix over the slip zone ; however. estimating that constant shear stress by uo, becomes
increasingly less accurate with decreasing G,/G».

Figure 6 shows the average axial fiber stress at the end of the slip zone. Z,. versus the
dimensionless loading parameter p/g,. If T, were equal to 0. then all of the load would have
been transmitted over the slip zone. which is the prediction of the constant shear stress
approximation. Since X is, in general, less than zero. some of the load is then transferred
across the nonslipping portion of the interface. Notice that more load is transmitted over
the slip zone (. /p gets closer to 0) as the load p/a, is increased and as the modulus ratio
GG, decreases. Coupled with the above results for the load transfer rate, it can be
concluded that estimating the load transfer with a constant shear stress approximation will
be more accurate with increasing p/o, and with decreasing G /G, though the transfer rate
must be modified more and more as G,/G, decreases.

Similar calculations were performed for g equal to 0.2 and 0.1. Again it was found that
the rate of load transfer over the slip zone is almost constant : however, an approximation of
this rate based on a constant shear stress pa, becomes increasingly accurate with decreasing
. This is consistent with the conclusions of an earlier study involving a frictional interface
(Dollar and Steif, 1988). Furthermore, it was found that, for a given slip length, the average
axial fiber stress at the end of the slip zone, Z,, is virtually independent of u.

For the five cases considered, we also computed the crack-tip opening, w, which is
defined as

w=lim y,(a,0). (13)

Note that the crack-tip opening w is nonzero due to frictional slip at the interface. Figure
7 shows the normalized opening w/a versus the dimensionless loading parameter p/a,. The
opening increases with increasing p/a,. as one would expect. and with increasing G,/G,.
Clearly a more compliant matrix allows for more displucement of the fiber. Figure 7 also
shows the opening calculated with eqn (12), assuming z,, is cqual to uo, (dashed curve).
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Fig. 6. Average axial fiber stress at the end of the slip zone as a function of applied pressure
{1 =0.3).
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Comparison of this approximate result with, say. the homogencous case indicates that a
simple-minded. concentric cylinder model with a constant shear stress at the interface
overestimates the opening, especially for large p/a,.

Finally, we will consider the results for the tensile stress at the plane = = 0. Figure 8
shows the normalized tensile stress o, /p in this plane versus ria for case L the homogencous
case. Results are presented for five different loading levels pjay, and these are compared
with the normalized tensile stress o../p found in the case of a perfectly bonded intertace. In
contrast to the perfectly bonded interface problem, the tensile stress reaches a fintte value
at the perimeter of the crack for the frictional interface problem. However. as the zone of
slip decreases, with increasing g or with decreasing p g, the stress fickd approaches the

L— perfectly bonded interface

Fig. 8. Tensile stress ahead of the crack tip (1 = 0.3. G, G. = [(.0).
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perfectly bonded stress field. As the load increases, the interface “blunts” the crack more
and more in the sense that the stress concentration diminishes ; the magnitude of this stress
concentration is found to be about the same as in the two-dimensional idealization of this
problem, which was studied in Schwietert and Steif (1991). Furthermore, it was found that
this stress concentration, for given p/a,. is rather insensitive to the relative modulus E,/E..
We also considered the distance over which the tensile stress decreases. This could give
some insight into the influence of a broken fiber on the stress in neighboring fibers. Consider.
therefore. a composite with fiber volume fraction 0.5. If the fibers are ordered in a hexagonal
array. then the distance between the perimeters of two fibers would be about 0.7a. Figure
8 shows that the tensile stress decreases quite rapidly away from the crack and that the
decrease is roughly the same for the frictional interface problem as for the perfectly bonded
interface problem. Our calculations indicate that, for the example of p/g, equal to 1.16,
o../p is approximately equal to 0.1 at r = 1.7a. Furthermore, this enhancement in stress is
only over a small region around the plane = = 0; for increasing = (at r = 1.74), 6../p remains
roughly equal to 0.1 up to z/a equal to 0.5 and decreases quite rapidly thereafter. This
suggests that the influence of fiber breaks on neighboring fibers may be relatively small.

5. SUMMARY

The problem of a single broken fiber which is connected by friction to an infinite matrix
has been studied. Using a new integral equation method, the solution to this problem has
been reduced to four simultancous integral equations which have solved numerically.
Particular results of interest have been the rate at which load is transferred between the
fiber and the matrix, the opening of the crack due to interfacial slippage, and the stress
enhancement near the fiber breuk. Consistent with simple analyses, the load transfer near
the break has been found o be nearly linear. However, the slope is influenced by the relative
moduli, and by the particulur combination of residual interfacial pressure and friction
coeflicient. Also, the proportion of load that is transferred over the slip zone can be small,
although it increases with the fevel of the applied stress. The opening of the crack is vaguely
similar to the predictions of simplified analyses, though the guantitative dependence on
pirameters is more complicated ; not surprisingly, there is a substantial dependence on
relative modulus. As was found in previous studies of cracks impinging on frictional
interfaces, the interfuce causes the tensile stress at the tip to be finite ; the stress concentration
diminishes with the applied load. Furthermore, the decrease of stress with distance ahead
of the break is sufficiently rapid that any influence of one fiber break on a neighboring fiber
seems unlikely as long as the matrix stays intact.
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APPENDIX
Herein, we give expressions tor the stresses and the displacement gradients associated with concentrated

unit ring forces. The kernels in the mtegral eqns {7) and (%) are obtained by setting r = ¢ o .

Concentrated unit ring force in the radial divection at (', 27 in an infinite medium
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where :
A=(3-4v); A, =(8vI-12v45); Ay =4(l—v)(1=2v).



